Usted está aquí: InicioCogeneraciónCogeneraciónTipos de Cogeneraciones

 Tipos de Cogeneraciones

Cogeneraciones con motor alternativo de gas o fuel

Utilizan gas, gasóleo o fuel-oil como combustible. Son muy eficientes eléctricamente, pero son poco eficientes térmicamente.

El sistema de recuperación térmica se diseña en función de los requisitos de la industria y en general se basan en la producción de vapor a baja presión (hasta 10 bares), aceite térmico y en el aprovechamiento del circuito de alta temperatura del agua de refrigeración del motor. Son también adecuadas para la producción de frío por absorción, bien a través del vapor generado con los gases en máquinas de doble efecto, o utilizando directamente el calor del agua de refrigeración en máquinas de simple efecto (Trigeneración).

Este tipo de instalaciones es conveniente para potencias bajas (hasta 15 MW) en las que la generación eléctrica es muy importante en el peso del plan de negocio. Los motores son la máquina térmica que más rendimiento tiene, pues es capaz de convertir actualmente hasta el 45% de la energía química contenida en el combustible en energía eléctrica, y se espera que en los próximos años este rendimiento aumente.

Se denomina diagrama de Sankey a la figura que representa la distribución de corrientes energéticas en un proceso industrial. Así, el diagrama de Sankey de una planta de cogeneración con un motor alternativo de combustión.

El reparto de energía en una planta con motor alternativo es aproximadamente así:

ventaja de que permiten una recuperación fácil del calor, que se encuentra concentrado en su práctica totalidad en sus gases de escape, que está a una temperatura de unos 500ºC, idónea para producir vapor en una caldea de recuperación.

Cuando se presenta en el denominado ciclo simple, el sistema consta de una turbina de gas y una caldera de recuperación, generándose vapor directamente a la presión de utilización en la planta de proceso asociada a la cogeneración. Su aplicación es adecuada cuando los requisitos de vapor son importantes     (>10 t/h), situación que se encuentra fácilmente en numerosas industrias (alimentación, química, papelera). Son plantas de gran fiabilidad y económicamente rentables cuando están diseñadas para una aplicación determinada.

El diseño del sistema de recuperación de calor es fundamental, pues su economía está directamente ligada al mismo, ya que a diferencia de las plantas con motores alternativos el precio del calor recuperado es esencial en un ciclo simple de turbina de gas.

El diagrama de Sankey para este tipo de instalaciones podría ser el siguiente:

Existe la posibilidad de aprovechar directamente el calor de los gases de escape sin hacerlos pasar por una caldera. El gas de escape puede ser utilizado en aplicaciones tales como secaderos, bien aplicando directamente el gas de escape sobre el material a secar o a través de un intercambiador gas-aire.

Cogeneraciones de turbina de vapor

En estos sistemas, la energía mecánica se produce por la expansión del vapor de alta presión procedente de una caldera convencional. El uso de esta turbina fue el primero en cogeneración. Actualmente su aplicación ha quedado prácticamente limitada como complemento para ciclos combinados o en instalaciones que utilizan combustibles residuales, como biomasa subproductos residuales que se generan en la industria principal a la que está asociada la planta de cogeneración.

Dependiendo de la presión de salida del vapor de la turbina se clasifican en turbinas a contrapresión, en donde esta presión está por encima de la atmosférica, y las turbinas a condensación, en las cuales ésta esta por debajo de la atmosférica y han de estar provistas de un condensador. En ambos caso se puede disponer de salidas intermedias, extracciones, haciendo posible la utilización en proceso a diferentes niveles de presión.

Cogeneraciones en ciclo combinado con turbina de gas

La aplicación conjunta de una turbina de gas y una turbina de vapor es lo que se denomina “Ciclo Combinado".

En el gráfico adjunto puede verse que los gases de escape de la turbina pueden tirarse a la atmósfera si no se requiere aprovechamiento térmico, a través del bypass, o pueden atravesar la caldera de recuperación, donde se produce vapor de alta presión. Este vapor puede descomprimirse en una turbina de vapor produciendo una energía eléctrica adicional. La salida de la turbina será vapor de baja presión, que puede aprovecharse como tal o condensarse en un condensador presurizado, produciendo agua caliente o agua sobrecalentada, que será utilizado en la industria asociada. Si la demanda de vapor es mayor que la que pueden proporcionar los gases de escape, puede producirse una cantidad de vapor adicional utilizando un quemador de postcombustión, introduciendo una cantidad adicional de combustible (gas natural) directamente a un quemador especial con el que cuenta la caldera. Esto puede hacerse porque los gases de escape son aún suficientemente ricos en oxígeno (en un ciclo combinado con motor alternativo no podría hacerse, ya que los gases de escape son pobres en oxígeno).

En un ciclo combinado con turbina de gas el proceso de vapor es esencial para lograr la eficiencia del mismo. La selección de la presión y la temperatura del vapor vivo se hace en función de las turbinas de gas y vapor seleccionadas, selección que debe realizarse con criterios de eficiencia y economía. Por ello se requiere una ingeniería apropiada capaz de crear procesos adaptados al consumo de la planta industrial asociada a la cogeneración, que al mismo tiempo dispongan de gran flexibilidad que posibilite su trabajo eficiente en situaciones alejadas del punto de diseño.

Una variante del ciclo combinado expuesto, en el que la turbina de vapor trabaja a contrapresión (esto es, descomprime el vapor entre una presión elevada y una presión inferior, siempre superior a la atmosférica) es el ciclo combinado a condensación, en el que el aprovechamiento del calor se realiza antes de la turbina de vapor, quedando ésta como elemento final del proceso.

El vapor de salida se condensa en un condensador que trabaja a presión inferior a la atmosférica, para que el salto térmico sea el mayor posible.

Cogeneraciones en ciclo combinado con motor alternativo

En este tipo de plantas, el calor contenido en los humos de escape del motor se recupera en una caldera de recuperación, produciendo vapor que es utilizado en una turbina de vapor para producir más energía eléctrica o energía mecánica. El circuito de refrigeración de alta temperatura del motor se recupera en intercambiadores, y el calor recuperado se utiliza directamente en la industria asociada a la planta de cogeneración. El rendimiento eléctrico en esta planta es alto, mientras que el térmico disminuye considerablemente. Es interesante para plantas con demandas de calor bajas que rentabilizan la inversión por la venta de energía eléctrica, fundamentalmente.

Trigeneración

La trigeneración suele referirse a la generación simultánea de tres tipos de energía: energía eléctrica, energía térmica en forma de 'calor' (agua sobrecalentada o vapor) y energía térmica en forma de 'frio', transformando posteriormente parte de ese agua sobrecalentada o vapor en agua fría utilizando equipos de absorción (de amoniaco o de bromuro de litio), que tienen un ciclo térmico sencillo pero bastante ingenioso.

La trigeneración, permite a la cogeneración, que inicialmente, no era posible en centros que no consumieran calor, acceder a centros que precisen frío que se produzca con electricidad.

Facilita a la industria del sector alimentario por ser cogeneradores potenciales. Asimismo, permite la utilización de cogeneración en el sector terciario (hoteles, hospitales, etc.) donde además de calor se requiere frío para climatización, y que debido a la estacionalidad de estos consumos (calor en invierno, frío en verano) impedía la normal operación de una planta de cogeneración clásica.

Tetrageneración

Una variante más de la opción anterior, en la que además de electricidad, calor frío se produce energía mecánica en una turbina (generalmente de condensación) para el accionamiento de bombas o para producir aire comprimido.

Go to top